State Estimation

Problem: Our controller is a function of the state, but we don’t know the state.
Goal: Estimate the state from input and output measurements.

If 2 is our estimate of the state and we simulate the dynamics

Control Systems | & = A% + Bu

then # ~ z. Noise and model error will always cause the estimate to diverge.
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State Estimation Error Dynamic Observer Canonical Form

Dynamics representing error between the true state and the estimated state is lbsaner CEa | O

=i —a; 1 0 b1
= Az + Bu— Az — Bu— L(y — C#%) T=|—a2 0 1|x+ |ba| u
= Az — &) — L(Cz — C#) —az 0 0 bs
=(A—LC)e y=10 0}96
Idea: Choose L so that the error system is stable and & — = Error dynamics are
How: Use pole placement exactly as in the control case —a; 1 0 L1 —a1—L1 1 0
A-LC=|-az 0 1| - |Ls [1 0 o}: —az—Ly 0 1
—as 0 0 L3 —asz — L:; 0 0

with the simple characteristic equation

det(sI — A+ LC) = s> + (a1 + L1)s” + (aa + La)s + (az + L3) = 0

Observer poles can be placed easily if system can be put in observer canonical form

Duality Conversion to Observer Canonical Form

Pole placement in observer canonical form

72+ 125+ 3 Y

—a1 1 0 Ly —a1—Li 1 0 Gls) = 1252 4bs+2 U
A-LC=|-a 0 1|-|L, [1 0 0]: —az—Ly 0 1
—az 0 0 Ls —az—Ls 0 0 Divide by s* and solve for Y

3 2
det(sI — A+ LC) = 5" + (a1 + L1)s” + (a2 + L2)s + (as + Ls) Y = s 17U — 2Y) + s~2(12U — 5Y) + s3(3U — 2Y)

Pole placement in control canonical form X1

sX1 =70 —2Y + s (12U = 5Y) + s >(3U — 2Y)

—a1 — K1 —as— Koy —a3— Ks X2
A— BK = 1 0 0 sXo =120 — 5Y + s '(3U — 2Y)
N— ———
0 1 0 X3
det(sI — A+ KB) = s™ + (a1 + K1)s"* + (a2 + K2)s" 2 + - - - + (a3 + K3) sX3=3U —-2Y

Observer pole placement is identical to controller pole placement if we replace
(A, B) with (AT, CT)



Conversion to Observer Canonical Form Pole Placement

Ackermann’s Estimator Formula

752 4125 + 3 Yy Goal Choose observer gain L for the system (A, C) so that the closed-loop system
G(s) = B +22+55+2 U é = (A — LC)e has the characteristic equation a.(s)
Take inverse Laplace transform 0
Y= L=a.(A)0!
T1 =Tu+ 2y + 2 =Tu+ 2x1 + x2 :
. 1
Xo = 12u — by + x3 = 12u — b5x1 + x3
X3 =3u—2y = 3u — 21, where a.(A) is the desired characteristic equation evaluated at the matrix A

n n—1 n—2
Putting this together, we get observer canonical form ac(A) = A"+ 1A + 524 ot Ba

2 10 7 O is the observability matrix, which plays the same role as the controllability matrix

T=|-5 0 1|lz+ |12|u C

-2 0 0 3 CA
Y= {1 0 ()] T 0= :

CAn—l
7 8
Observability Duality and Matlab
Consider the system The duality between controller pole placement and observer pole placement

means that we can use the same tools
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which has the transfer function G(s) = .

a
<x> + K = acker(A, B, pc)
= place(A, B, pc)
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x Lt = acker(A', C', pe)

place(A', C', pe)
L = Lt'
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o
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The states are the position and the velocity, but we're only measuring the velocity. ) ) ) ) ) )
where pc is the list of desired controller poles, and pe is the list of desired

— Impossible to estimate the position and therefore this system is unobservable estimator poles

An LTI system is observable if and only if we can place the poles of the error
system, which can be done only if O is invertible

LTI system (A, C) is observerable if and only if the observability matrix is full rank

rank O = n



Estimator pole selection is a tradeoff between sensor noise and transient response Design estimator for
- Faster estimator — more sensor noise passed to controller &= _11 1'2 -+ (1)] @
- Slower estimator — slower transient response
Y= [1 0] @

Rule of thumb:  Estimator poles should be faster than the controller poles by about
2-6 times

Design estimator for
1 N
-1 1.5 i 1
xr = x u
1 -2 0 Q 0 N
3
Y= [1 0] aF n -1 i
Place the observer poles about 2 — 3x faster than the dominant poles of the system ‘  Estimator poles at (=0.5,-0.5)
[ [ [
)\Inax(A) =—0.18 1L |
Place two observer poles at 0.5 o 0Ok |
L = acker(A', C', -[0.5, 0.5]) g 4 |
92 )
) ‘ ‘ Estimator poles at (=5, —5)
L= L 5} 0 5 10 15 20 25 30

Time (s)

Blue : True state Orange: Estimated state .



Example - Impact of Measurement Noise Combining Control and Estimation

w v
a 0 * Plant Sensor
©
5 N .
n u()= x=Ax+Bu ib C o (1)
—2 .
Estimator poles at (0.5, —0.5)
u(t) v
Control law Estimator

X0 | 2= AR
9 K . () | x=Ax+ Blu
T +L(y— Cx)
(%2

Compensator
' ‘ Estimator poles at (—5, —5) ,‘ o
0 5 10 15 20 25 30 What is the overall system?
Time (s)
Blue : True state Orange: Estimated state 1% 15

Combining Control and Estimation Controller Transfer Function

Full-state feedback controller w v
| |

. Plant Sensor
i = Az — BK# =A% — BK# + L(y — C%) u(t) x(1)
= Az — BK(z —e) é=2—3% X=Ax+Bu |—= C o ¥(1)
wheree =z — & = Az — BK# — A2 + BK@ — L(y - C#) = L
=(A-LC u
( )e Control law Estimator
K X(0) | 3= A%+ BAu

Putting these together gives +LO - Cx)

3 Compensator

) |A-BK BK

el 0 A-LC
The poles of the closed-loop system are b= (A_LC-BK) 4Ly - K(s) = gES; —C(sI—A)'B+D

“ S
det(s — A+ BE) det(s — A+ LC) = ac(s)ac(s) =0 w= K& = —K(sI— A+ LC+ BK)"'L

This is called the separation principle.



Consider the second-order system G(s) = 1/s?

Design a controller and estimator such that the closed-loop system has an over-

& =

1 0

.[00
T =
0

= ]

shoot of no more than 20% and a settling time of 4sec.

Specifications

- M, < 20% overshoot — ¢ > 0.45
Ty <4 —0="Cwn>1—w, >22

Choose pole locations

ac(s

Example - Design Observer

y=s"+2.0.45-22s+2.2°

Place estimator poles 5x faster than the controller poles

Controller poles have a decay rate of o = Cw,, = 1

det(sI — A+ LC)

Choose Ly =25 and Ls = 10

ae(s) = (s +5)°

:detSO—OO
0 s 1 0

S L1
—1 8+L2

= det

:8(8+L2)+L1:82+L28+L1
=5 +10s +25

20

Example - Design controller

Place poles by matching characteristic equations (could also use acker or place)

ac(s) = det (s[ — {0 0

= det

n 1

1 0 0
s+ K1 Ko
-1 s

)

:(S+K1)S+K2182+K18+K2
=52 4+2-045-2.25+2.2%

choose Ko = 5and K1 = 2.

Example - Regulator

Magnitude (dB)

Phase (deg)

K(s)=—-K(sI —

A+ LC+ BK) 'L=

100s + 125
s2 4+ 125+ 50

10°

10"
Frequency rad/sec

102

10°

21



Example - Regulator Example - Regulator

_ 100s + 125 1 100s + 125
K(s)=—-K(sI —A+ L BK)'L=—2"1-22 K(s)=—K(sI — A+ L BK) L=——-—""—
(s) (s +L1C+ BK) $2 + 125 + 50 (s) (s +LC + BK) $2 + 125 4 50
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Frequency rad/sec Frequency rad/sec
This is a lead compensator (PM = 30°, GM = 12.5dB)
21 21

Where do we Add the Reference?

System and controller dynamic equations

System & = Az + Bu
y=Cx
Controller #=(A—BK — LO)% + Ly
u=—Kz

Reference Input
Addition of the reference as a linear input to the controller

&= (A—BK —LC)&+ Ly + Mr
w=—Ki+ Nr

How to choose M and N?

Note that the reference cannot impact the pole locations. It does change the zeros

22



Option 1: Autonomous Estimator

Idea: Estimator is estimating the state of the system, and so should not be im-
pacted by the reference

Select M and N so that the state estimation error is independent of r

& —&=Ax+ B[-K&+ Nr]— [(A— BK — LC)Z + Ly + Mr]
é¢=(A-LC)e+ (BN — M)r

We can see that the reference has no impact if

BN =M

23

Option 1: Selection of N

- The reference has no impact on the estimator

- The steady-state estimate equals the true state s = xss

Choose N to ensure zero tracking error in steady-state

u=—Ki+ (Ny+ KNy)r = —K#+ Nr

Il

Note : This is exactly as we saw in the full state-feedback case

where N, and N, are chosen as

A B
C D

25

Option 1: Autonomous Estimator

&= (A— BK — LC)i + Ly + BNr
=(A—LC)% + Ly + Bu
u=—K&+ Nr

Note that the estimated state & does not have the reference as an input

Plant
Oy
Estimator
e
Pro: If the input is saturated, then it can be saturated for the estimator too. "

Consider the second-order system G(s) = 1/s*
. 0 0
xr =

[1 0

=

Design a controller and estimator such that the closed-loop system has an over-
shoot of no more than 20% and a settling time of 4sec.

We previously computed a controller and observer

K= [2 5} L= [i‘j

26



Option 1: Autonomous Estimator

Select the gain N so that we have zero steady-state error

-1
-1
A B

C D 1

Select M = BN

0 0 0 1 0 0
]—100 0—1—{
0 1 0 1 0

N,
N,

27

Poles and Zeros

The poles and zeros of the closed-loop system are

Poles:(—liQi -5 —5)

Zeros = (—5 —5)

The reference adds zeros to cancel exactly the poles of the estimator

As a result, the system is now uncontrollable.

5 —10 -5

rank C = rank 0 -10
—-10 -5

0 5 —10

This makes sense, as we have designed the reference to have no impact on the

estimator.

29

Option 1: Autonomous Estimator

The entire system becomes

#\ [A4 ~-BK v\ [BN
2] |LC A-BK-LC|\# BN

0o 0 -2 =5

5
1 0
0 25 =2 —=20|\2 5
0 0

o[ o (2)

28

Autonomous Estimator

Output
o
at
I
|

State
o

Orange: Estimate
Blue: True state
0 5 10 15 20 25 30 35

30



Option 2: Tracking-error Estimator

Idea: Use only the tracking error e = r — y in the estimator

This form is used when only the error is measured

Choose M and N such that the estimator only uses the errore =+ —y

#=(A—BK - LC)i+ Ly + Mr
u=—Ki+ Nr

This is satisfied if N =0and M = —L

The controller becomes

&= (A—BK - LO)&+ L(y—r)
u=—-Kz
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Option 2: Tracking-error Estimator

The entire system becomes

(:

xT

T

)

[ A -BK x 0
e A-Br—ro|\z) T l=L|”
00 -2 -5 0
10 0 0|z 0

0 2 -2 —2|\a) " |-25
0 10 1 -10 ~10
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Option 2: Tracking-error Estimator

&= (A—BK — LO)i+ L(y —r)

u=—-Kz
Plant
u
Estimator
X
-K

32

Tracking-Error Estimator

Output

1.5

1

State
o

Orange: Estimate
Blue: True state

10 15 20 25 30 35
Time (s)

Note that the estimator is no longer estimating the state. 34



Comparison of Reference Methods

1.5 ]
1 = pug
\7 \ \7
5
S 05} i
3 Integral Control
0h—es \/Av |
\/ Orange: Autonomous Estimator
051 | | | | Blue: Tracking-error Estimator
0 5 10 15 20 25 30 35
Time (s)

Tracking-error estimator tends to have larger overshoot.

35

Integral Control Structure of Integral Controllers

Problem: No integrator in the control loop. Steady-state offset is likely.
Solution:  Add an integrator

Define an artificial state that is the integral of the error U= — {Ko Kl] ( )

Controller will have the form

xrr

t
zi(t) = /0 e(r)dr where e(t) =r(t) —y(t) and &1(t) = e(t) The resulting control structure is

Define the augmented system model to include the integral state 1

— = —-K O System >
r - 5 1 T \ Y
@\ A of [z +Bu+07‘
i) |—-C 0| \as 0 1
xT
y=o o]<>

Now design a controller using previous methods and in steady-state we have

Note that we've taken a different sign on the feedback loop here compared to the
r(t) =e(t) =0 book to keep the standard loop.

36 37



1

Gls) = — Gls) =

Design an offset-free controller with two poles at —5 and an estimator pole at —10. Design an offset-free controller with two poles at —5 and an estimator pole at —10.

State-space model

38 38

1 1
C= Ce= o

Design an offset-free controller with two poles at —5 and an estimator pole at —10. Design an offset-free controller with two poles at —5 and an estimator pole at —10.

State-space model State-space model

T=-3r+u

<
I
8

Augment system dynamics

. )=o)

Place poles at —5, —5

.
u
0

r

34K K
detsl — A+ BK =det |° 72T 50 1

i }=(5+3+K0)5K1:,92+105+25
s

Controller is K = [KO Kl] = {7 725]

38 38



1

Gl = s+ 3

Design an offset-free controller with two poles at —5 and an estimator pole at —10.

State-space model

Place estimator poles

det(sI — A+ LC)=s+3+L=s+10

Observer gainis L =7

Estimator dynamics

&= (A—-LC)i+ Ly + Bu=—10& 4+ Ty + u

38

Example - Response

1
0.5 i
5
= 0
>3
o
—0.5 ]
Blue: Response to reference
. ‘ ‘ ‘ Orange: Response to disturbance
0 1 2 3 4 5 6 7 8 9 10

Time (s)

We have offset-free tracking and constant disturbance rejection.
40

Example - Block Diagram

w
e 1 Tr L 1
r—= 5 25 O- O T Y
u
; T
s e

r=-3x+u+tw

W= —Ti+ 251, x -3 25 -7 T 0 1
| =|-1 0 0 x|+ |17+ [0 w
e i 7 25 17| \ & 0 0
z=-102+ Tx +u
Poles at (—10, -5, —5) 39

Summary - Design Procedure

1 State-Feedback Design 2 State Observer

Assume that the state is measured, Design a dynamic system to esti-
and design a static control law u = mate the state
Kz

¢ = Ax + BKzx )
Design L, M and N so thatz ~ z

Problem : We can’t measure !

@ Combine controller and observer to provide a single, dynamic control law.

@ Add reference tracking.
Separation principle tells us that independent design of these elements is optimal.

Pole placement of estimators is dual to that of controllers.



